Studying Sea Level Rise and Coastal Forests with Dendrochronology

Stephanie Stotts, Ph.D.

Lihoshimar Gonzalez

NNX13AB30A

- Tidal forested freshwater wetland response to sea level rise
 - Very little
 - Ecotonal position makes them sensitive to sea level rise (Whigham et al. 2009)
 - Forest communities being converted to marsh (Craft et al. 2009)
 - Tree stress can cause changes in the net N and P mineralization, thus impacting eutrophication (Noe et al. 2013)

Introduction

- Tidal forested freshwater wetland response to sea level rise
 - Very little
 - Ecotonal position makes them sensitive to sea level rise (Whigham et al. 2009)
 - Forest communities being converted to marsh (Craft et al. 2009)
 - Tree stress can cause changes in the net N and P mineralization, thus impacting eutrophication (Noe et al. 2013)

- Tidal forested freshwater wetland response to sea level rise
 - Very little
 - Ecotonal position makes them sensitive to sea level rise (Whigham et al. 2009)
 - Forest communities being converted to marsh (Craft et al. 2009)
 - Tree stress can cause changes in the net N and P mineralization, thus impacting eutrophication (Noe et al. 2013)

Methods

- Tidal forested freshwater wetland response to sea level rise
 - Very little
 - Ecotonal position makes them sensitive to sea level rise (Whigham et al. 2009)
 - Forest communities being converted to marsh (Craft et al. 2009)
 - Tree stress can cause changes in the net N and P mineralization, thus impacting eutrophication (Noe et al. 2013)

Why Should We Care?

Deciduous Forest

Forested Wetland

Introduction

Dendrochronology

Methods

Preliminary Results

Next Steps

Research Questions

- 1. Can we use dendrochronology and coastal forests as a proxy for sea level rise?
- 2. Can we learn about coastal forest response to sea level rise?
- 3. Can we learn about storm frequency and marsh inundation from the tree ring record?

*very few studies with tree rings in these communities

Research Questions

- 1. Can we use dendrochronology and coastal forests as a proxy for sea level rise?
- 2. Can we learn about coastal forest response to sea level rise?
- 3. Can we learn about storm frequency and marsh inundation from the tree ring record?

*very few studies with tree rings in these communities

Research Questions

- 1. Can we use dendrochronology and coastal forests as a proxy for sea level rise?
- 2. Can we learn about coastal forest response to sea level rise?
- 3. Can we learn about storm frequency and marsh inundation from the tree ring record?

*very few studies with tree rings in these communities

Annual Tree Rings (cross-section view)

Variation in Ring Width Due to Environmental Conditions

Visual Inspection and Dot Dating

Dendrochronology

Methods

Preliminary Results

Skeleton Plots

the narrower the ring, the longer the line!

Methods

Measuring Rings (.001mm)

False and Missing Rings

TREE-RING WIDTH

Methods

Next

The MASTER CHRONOLOGY is based on previously measured and dated tree rings from the same area and includes a master skeleton plot AND tree-ring width measurements (indices)

Study Site: St. Jones Reserve

Study Species: Eastern Red Cedar

- 1. Master chronology 1 (below 1 ft contour)
- 2. Master chronology 2 (between 1 ft and 2 ft contour)
- 3. Difference chronology
- 4. Compare to tide gauge
- 5. Compare to storm records

Study Site: St. Jones Reserve

Study Species: Eastern Red Cedar

- Master chronology 1
 (below 1ft contour)
- 2. Master chronology 2 (inundated with 1.0 m rise)
- 3. Difference chronology
- 4. Compare to tide gauge
- 5. Compare to storm records

Study Site: St. Jones Reserve

Study Species: Eastern Red Cedar

- Master chronology 1
 (inundated with 0.5 m rise)
- 2. Master chronology 2 (between 1 ft and 2 ft contour)
- 3. Difference chronology
- 4. Compare to tide gauge
- 5. Compare to storm records

Study Site: St. Jones Reserve

Study Species: Eastern Red Cedar

- Master chronology 1
 (inundated with 0.5 m rise)
- 2. Master chronology 2 (between 1 ft and 2 ft contour)
- 3. Difference chronology
- 4. Compare to tide gauge
- 5. Compare to storm records

Study Site: St. Jones Reserve

Study Species: Eastern Red Cedar

- Master chronology 1
 (inundated with 0.5 m rise)
- 2. Master chronology 2 (between 1 ft and 2 ft contour)
- 3. Difference chronology
- 4. Compare to tide gauge
- 5. Compare to storm records

- Collected duplicate cores from a minimum of 20 trees for both chronologies
- Glued and sanded all cores
- Dot dated and created a master skeleton plot for master chronology 1
- Measured all rings for master chronology 1
- In the quality control process for master chronology
 1

- Collected duplicate cores from a minimum of 20 trees for both chronologies
- Glued and sanded all cores
- Dot dated and created a master skeleton plot for master chronology 1
- Measured all rings for master chronology 1
- In the quality control process for master chronology
 1

- Collected duplicate cores from a minimum of 20 trees for both chronologies
- Glued and sanded all cores
- Dot dated and created a master skeleton plot for master chronology 1
- Measured all rings for master chronology 1
- In the quality control process for master chronology
 1

- Collected duplicate cores from a minimum of 20 trees for both chronologies
- Glued and sanded all cores
- Dot dated and created a master skeleton plot for master chronology 1
- Measured all rings for master chronology 1
- In the quality control process for master chronology
 1

- Collected duplicate cores from a minimum of 20 trees for both chronologies
- Glued and sanded all cores
- Dot dated and created a master skeleton plot for master chronology 1
- Measured all rings for master chronology 1
- In the quality control process for master chronology

Preliminary Results

Time Span: 84 years (1932-2015)

Time Span with more than 2 series: 73 years

(1943-2015)

Number of Series: 27

Rings measured: 1,175

Series intercorrelation 0.190

Average mean sensitivity .379

Problems to be addressed: 31

Preliminary Results

Preliminary Results

Next Steps

- 1. Clean up and de-trend master chronology 1
- 2. Build master chronology 2
- 3. Create difference chronology
- 4. Complete statistical analysis

References and Questions

- Craft, C, Clough, J, Ehman, J, Joye, S, Park, R, Pennings, S, Guo, H, Machmuller, M. 2009. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment. 7 (73–78)
- Noe, G., Krauss, K., Lockaby, B., Conner, W., Hupp, C. 2013. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorous mineralization in tidal freshwater forested wetlands. Biogeochemistry. 114 (225-244).
- Whigham, D, Baldwin, A, Barendregt, A. 2009. Tidal freshwater wetlands. In: Perillo, G, Wolanski, E, Cahoon, D, Brinson, M (eds). Coastal wetlands: an integrated ecosystem approach. Elsevier, Amsterdam. (515–534)